Skip to main content

Are you still worried about researching and developing products for five-axis machining? This ensures high efficiency and safety!

In various industrial fields, five-axis linkage Cnc Machining centers are tools that have been widely used in recent years. Especially when researching and developing five-axis machining of products, due to the development of new products, metropolises need special-shaped, new or complex parts, so its utilization rate is even higher. But precisely because of the extremely high complexity of five-axis machining of research and development products, the probability of tool collision is high. How can we avoid knife collision as much as possible?

Adding optional module programming Op to the simulation solution can effectively allow users to improve the NC program according to the motion mode of each machine tool, and use efficient lateral motion to automatically find a better orientation without collision for multi-axis machining.

It allows programmers to avoid errors to a great extent when manually optimizing the axis position. The overall improvement process is complicated, so the following three points should be given priority when implementing.

1. Consider the properties of specific machine tools

When programming for various types of machining centers, a very obvious advantage of Op will appear. Its simulation software can be adjusted according to the operating conditions of the CNC machining machine tool to control and implement comprehensive collision detection, so it can be relatively independent of the machine tool. Attribute creation CAM program, thereby improving the flexibility of process allocation and processing.

2. Op detection limits

Op can also find other problems that may arise. For example, if the machine axis rotation is limited, the software will take this into consideration when selecting tool positions and ensure smooth machining. If there is an axis limit, Op will interrupt the tool path, slowly retract the tool and retract the axis to avoid this limit. Then the tool will slowly feed again and continue machining. This method can be used for spiral machining on restricted machine tools. Angle head machine tools can also be used with Op to achieve dynamic machining. ‍

3. Use as many axes as needed

The software optimizes the feed motion and automatically determines whether positioning with the rotary axis is faster. The rotation axis moves along a short path, and the movement of the linear axis is greatly reduced. In this way, a faster speed can be achieved during exercise. If a 3-axis movement is not possible due to a collision or axis restriction detected, Op will change the movement with the help of four or five axes. For various types of operations, whether it is 2.5-axis, 3-axis or 5-axis, they can be effectively connected, thereby reducing the timeliness of auxiliary processing. When the tool is close to the workpiece, the collision will be checked first to ensure that the tool will not retract to a safe plane during movement, effectively shortening the processing time.

Although five-axis milling is a challenging CNC lathe processing mode in the research and development of five-axis machining, due to programming and improper operation by employees, it is easy to hit the tool and affect the qualified rate of processed products, but the matter is human, through Op programming The improvement can effectively consider the axis limitation and optimization algorithm processing sequence at the same time, thereby reducing repositioning, improving efficiency, and ensuring the safety of processing.

Link to this article:Are you still worried about researching and developing products for five-axis machining? This ensures high efficiency and safety!

Reprint Statement: If there are no special instructions, all articles on this site are original. Please indicate the source for reprinting.:Cnc Machining,Thank

Comments

Popular posts from this blog

What are the characteristics of the CNC turning process?

What are the characteristics of the CNC turning process? Turning is a method of cutting the workpiece on the lathe by rotating the workpiece relative to the tool. Turning is the most basic and common cutting processing method. Most workpieces with revolving surfaces can be processed by turning methods, such as inner and outer cylindrical surfaces, inner and outer conical surfaces, end surfaces, grooves, threads, and rotary forming surfaces. Common lathes can be divided into horizontal lathes, floor lathes, vertical lathes, turret lathes and profiling lathes, and most of them are horizontal lathes.

The Influence of CNC Turning and Milling Machining on Turning Efficiency

The cutting efficiency of CNC lathes will be affected by human factors, environmental factors and the machine tool itself. Let's talk about the influence of cutting amount and cutting tools on CNC lathe processing among many factors.   Reasonable cutting amount can improve the efficiency of CNC lathe. When the   laser  cutting  speed is increased by 10 times and the feed rate is increased by 20 times, far beyond the traditional cutting forbidden zone, the cutting mechanism has undergone a fundamental change.   The result of CNC turning  and milling combined processing is: the metal removal rate per unit power is increased by 30% to 40%, the cutting force is reduced by 30%, the cutting life of the tool is increased by 70%, and the cutting left on the workpiece is greatly reduced. Heat, cutting vibration almost disappeared; cutting processing has taken an essential leap. According to the current situation of CNC lathes, increase the feed per tooth, improve pr...

Machining and welding process notes for TC4 titanium alloy parts

Common welding methods for titanium and titanium alloys are as follows: Argon arc welding, submerged arc welding, vacuum electron beam welding, etc. Tungsten argon arc welding is used for thicknesses of 3 mm or less, and argon arc welding is done for 3 mm or more. The purity of argon is over 99.99%, and the content of air and water vapor in argon is strictly controlled. Currently, for TC4 titanium alloys, argon arc welding, plasma arc welding are often used for welding, but both methods need to be filled with welding material. Limitations on shield gas, purity and effectiveness increase the oxygen content of the joint, reduce its strength and increase its post-weld deformation. Electron beam welding and laser beam welding are used. The following is a description of precision welding and precautions for TC4 titanium alloy. 1. Weld hole problem Table of Contents 1. Weld hole problem 2, internal quality of welded part 3. Weld depth and its variation 4, j...