CNC lathe parts are processed with a variety of raw materials. Among them, aluminum parts are one of the more processed parts. When using CNC machine tools to process aluminum machining parts, you want to make the processing models and specifications more stable. Such areas must It is necessary to pay attention to the refrigeration problems of raw materials and the deformation of aluminum die castings after refrigeration. Such things are generally inevitable. At this time, it is necessary to pay attention to the application of diesel engine refrigerant as much as possible. Consider the deformation of raw materials.
Processing technology
Unscientific processing technology can easily lead to deviations in the model specifications of aluminum die castings. To ensure the basic processing technology (such as cutting CNC machine tool processing "first rough and then fine, face first and then hole, first many and then spicy small surface" or welding fixture application "reduce the frequency of clamping and use as much as possible to form fixtures" It is necessary to avoid the machining deviation caused by iron pins on aluminum parts as much as possible.
Basic parameters
Cutting rates, cutting speeds, cutting factors, and tool compensation are all cutting factors that impair the efficiency of processing, so special attention should be paid. Tool selection
When machining aluminum parts, use special-purpose tools as much as possible. Such tools are generally more purposeful. For example, turning tools special for aluminum milling generally have larger rake angles and helix angles, sharper cutting edges, which are more conducive to the processing of aluminum parts (such as anti-chip buildup), and the processed performance indicators will be stronger.
Stress field level
The aluminum material is too soft, so try to pay extra attention to the clamping range. In addition, during processing, the aluminum parts are roughed intact and left for a period of time before the next production process is carried out to remove the stress field.
In addition, it is necessary to pay attention to the milling surface and the demand of cutting fluid during the processing of aluminum parts. There are many factors that impair the efficiency of aluminum processing, so it should be handled flexibly during processing, and the actual problems should be analyzed in depth. Stable machine tools, effective processing techniques and tools, and the technical strength of their operators are all factors that impair product quality.
Tool selection
When machining aluminum parts, try to use special tools, which are generally more targeted. For example, lathes for aluminum milling generally have larger rake angles and helix angles, and the laser cutting edges are sharper, which is more conducive to the processing of aluminum parts (such as anti-chip buildup), and the processing performance will be stronger.
In addition, special attention should be paid to the difficulty of milling and the amount of cutting fluid required in the processing of aluminum parts. There are many factors that damage the credibility of aluminum processing, so it should be handled flexibly during processing, and specific difficulties should be analyzed in detail. Stable machine tools, reasonable processing technology and cutting tools, and the technical level of operators are all factors that harm product quality.
Processing technology
Unreasonable processing technology can easily cause errors in specifications and models of cast iron parts. In ensuring the basic processing technology (such as cutting CNC machine tools
Most of the basic processing technology key links such as "coarse first and then fine, surface first, hole first, many spicy noodles first" or "reduce the number of clamping times, try to use the composition of the tooling and fixture" in the use of fixture tools) Reduce machining errors caused by iron pins on aluminum parts.
There are many reasons for the deformation of aluminum parts, which are often related to raw machining materials, parts appearance, and production and processing specifications. There are several important aspects: deformation caused by blank welding stress, deformation caused by cutting force and cutting heat, and deformation caused by clamping force.
| |||||||||||||||||
Comments
Post a Comment