Skip to main content

Analysis of Difficulties in Processing of Medical Parts and Devices

90% of medical machining parts and equipment implants are made of Ti6Al-4V titanium alloy, which is derived from light weight, high strength and high biocompatibility. Titanium alloy 6AL-4V has become a commonly used material for medical implant equipment. Titanium alloy 6AL-4V is usually used in the production of hip joints, bone screws, knee joints, bone plates, dental implants, and spine connection components. Titanium alloy has the characteristics of work hardening, the cutting angle is large in the processing process, and the chips produced are thin. A relatively small contact area is formed on the surface.

1. Titanium alloy materials that are difficult to process for medical parts

The high speed laser cutting force during the machining process, combined with the frictional force during chip flow, will comprehensively lead to excessive local cutting heat of the tool. The poor thermal conductivity of titanium alloys prevents the cutting heat from being conducted quickly. As a result, a large amount of cutting heat is concentrated on the cutting edge and the tool surface. High cutting force and cutting heat will comprehensively cause crescent craters and cause rapid tool failure.

The relatively low modulus of elasticity makes titanium alloys more elastic than steel. Therefore, excessive cutting force should be avoided to ensure that the rebound of the workpiece is small. Thin-walled parts have a tendency to deform under tool pressure, causing chatter, friction and even tolerance problems. The key to solving the problem is to ensure the rigidity of the entire system. It is very necessary to use tools with sharp cutting edges and correct geometric shapes. In addition, machining titanium alloys have a tendency to chemically react and alloy with cutting tools at high temperatures, and their chips have a tendency to be welded to the surface of the tool.

2. Reliable and compact machine tool fixture

Medical equipment processing equipment needs to be able to process small and complex parts made of difficult-to-process materials (such as titanium alloy or stainless steel) with high accuracy requirements. For example, processing bone and joint replacement parts is quite complicated. Due to the poor cutting performance of the material being processed, the blank is usually a bar stock-which means that a large amount of metal needs to be removed. As a result, some parts are cast into a shape close to the finished product, but this also adds to the trouble-the need to manufacture complex and expensive fixtures. Another factor that increases processing complexity is the narrow tolerance range.

Medical equipment parts and components have high requirements for material, processing accuracy, and surface finish, which requires high reliability of the processing system. Therefore, extremely high requirements are placed on machine tools, fixtures, cutting tools, and CAM software. Workpieces are usually processed on advanced medical equipment processing equipment such as Swiss automatic lathes, multi-spindle machine tools and rotary tables. These machine tools are mostly characterized by very small size and very compact structure.

The characteristics and requirements of medical device parts processing have undoubtedly promoted the development of processing technology and solutions to improve the competitiveness and production efficiency of small and medium-sized enterprises in machining medical devices.




Alan Lan

Foreign trade manager

General Manager's Office | Wonder Group

13712198704 | 15112807161
info@wonders-group.com
https://beryllium-copper.com/
No 3,Zhengda Road,Shatou Village,Chang'an Town,Dongguan City,Guangdong Province,China


Comments

Popular posts from this blog

Analysis of License Plate Recognition Technology

License plate recognition is a pattern recognition technology that uses the dynamic video or static image of the vehicle to automatically recognize the license plate number and the color of the license plate. The core of the technology includes license plate location algorithm, license plate character segmentation algorithm and optical character recognition algorithm. The working principle of license plate recognition technology Vehicle detection: Buried coil detection, infrared detection, radar detection technology, video detection and other methods can be used to sense the passing of the vehicle and trigger image capture. Image collection: Real-time and uninterrupted recording and collection of passing vehicles through the high-definition camera capture host. Preprocessing: noise filtering, automatic white balance, automatic exposure and gamma correction, edge enhancement, contrast adjustment, etc. License plate location: Scan the rows and columns on

Liquid-crystal display (LCD) Over View

LCD Display  History: Liquid-crystal display (LCD) was invented in 1964 at RCA Laboratories in Princeton, NJ. In 1970, twisted-nematic (TN) mode of operation was discovered, which gave LCD the first commercial success. The LCD manufacturers supplied small-size displays to portable products such as digital watches and pocket calculators. In 1988, Sharp Corporation demonstrated a 14-in. active-matrix full-color full-motion display using a TFT (thin-film-transistor) array. Observing this, Japan launched a true LCD industry. Large-size displays were first supplied to personal computers and then to television receivers. In the second half of 1990s, the industry has moved to Korea and Taiwan. LCD display Industrial Display Systems: Industrial Display Systems provide a wide range of reliable displays from 5.7″ to 55″ including LCD displays, touch screen panels, outdoor displays and digital signage displays, and a series of industrial monitors including open frame monitors and panel mount moni

Hydrostatic guideway of CNC machining lathe

The static pressure slide rail (TTW guide) of the CNC machining lathe transfers the oil with a certain pressure through the throttle to the oil cavity between the sliding surfaces of the slide rail (TTW guide) to form a pressure oil film to float the moving parts , Make the sliding rail (TTW guide) surface in a pure liquid friction state.   CNC machining General CNC machining usually refers to computer digital control precision machining, CNC machining lathe, CNC machining milling machine, CNC machining c17200   beryllium   copper   and milling machine, etc. The feed route of finishing is basically carried out along the part contour sequence. Therefore, the focus of determining the feed route is to determine the feed route of rough machining and idle stroke. In the numerical control processing, the control system issues instructions to make the tool perform various motions that meet the requirements, and the shape and size of the workpiece are expressed in the form of numbers and lette